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SUMMARY 

A molecular interpretation of the phenomenological van der Waals 
parameters of the equation of state for real molecular networks 
is presented. The theoretical treatment is eludicating the spe- 
cial role of the crosslinks. 

INTRODUCTION 

The hypothesis that mutual interactions between the chains of a 
molecular network do not influence the force of deformation is in 
contradiction to the concept of a van der Waals equation of state 
/1,2/. The great potency of explaining a set of different experi- 
ments with the aid of that empirical equation of state /1,2/ is 
stimulating the question if there might be developed a justifica- 
tion of the van der Waals approach. 

The situation will be considered to be entirely equivalent to that 
which is known from the statistical treatment of a van der Waals 
gas /4/. The problem of understanding is twofold: It is necessary 
in the first place to provide appropriate means for eludicating 
the influence of the finite chain lengths ("co-volume") and for 
subjecting this to quantitative characterization. Secondly, suit- 
able relationships must be established to express the dependence 
of the physical properties of the molecular network on the mutual 
interactions between its chains. 

THE IDEAL NETWORK 

Let us recall essential properties of a Gaussian chain: 

- the chain occupies no volume, thus allowing total penetration 

- the energy of the chain is kinetical only substantiated by mi- 
cro-brownian motions of its segments 

- with no interactions, the various conformations of the chain 
are isoenergetical in the statistical average. 

For the ideal network the following properties are important /8/: 

the N chains in the network are Gaussian-chains 
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- the j u n c t i o n s  are  assumed to be p o i n t - l i k e  w i t h o u t  any o r i e n t a -  
t i o n a l  r e s t r i c t i o n s  to  the segments i nvo l ved  

- the mean square end - to -end  d i s t a n c e  f o r  the whole assembly o f  
chains in the uns t ra i ned  s t a t e  is the same as f o r  a ~or respond ing  
se t  o f  f r ee  chains 

- the j u n c t i o n s  p o i n t s  between the cha ins move on d e f o r m a t i o n  as i f  
t he re  were embeded in an a f f i n e  cont inuum 

- autonomy o f  the chains is represen ted  by the f a c t  t h a t  the e n t r o -  
py o f  the network  is the sum o f  the e n t r o p i e s  o f  the i n d i v i d u a l  
cha ins .  

The idea l  ne twork  has on ly  k i n e t i c a l  energy which is  u n i f o r m l y  d i -  
s t r i b u t e d  over  the cha ins in the s t a t i s t i c a l  average.  L e t t i n g  the 
" t r a n s l a t i o n a l  volume" occup ied by the cen te rs  o f  mass o f  the 
cha ins ,  be i n v a r i a n t ,  we may desc r i be  the d e f o r m a t i o n  w i t h  the a i d  
o f  the i d e a l i z e d  network  model the cen te rs  o f  mass o f  which are  
cons ide red  to  be l o c a l i z e d .  Hence, the idea]  ne twork  may be de- 
sc r i bed  as "an idea l  gas" in the c o n f o r m a t i o n a l  space /2,3/. The 
chains are the " q u a s i - p a r t i c l e s "  o f  the system which have the we11- 
known de fo rma t i on  p o t e n t i a l  / 8 /  

W = NkT ~(X); I = LIE o (I)  

with N as the number of chains, k BOLTZMAN's constant, T the abso- 
lute temperature. ~(X) is the "deformation function" which has 
for simple elongation the form 

~(X) = ( 2 § 2/X -3)12 (2) 

Hence, we ]earn  from 

W (X = I )  = N (3kT12) (3) o 

which is the t o t a l  k i n e t i c a l  energy o f  the idea l  network  in the un- 
s t r a i n e d  s t a t e ,  t h a t  the q u a s i - p a r t i c l e s  are c h a r a c t e r i z e d  by th ree  
freedoms o f  the k i n e t i c a l  energy.  
The e l a s t i c  r e t r a c t i v e  f o r c e  o f  the idea]  rubber  is  then equal to  

f = awl BL = NkT (X- X-2)/Lo = nokT (4) 

with 

no= (N/L o) ( l -  1-2) = (N/L o) D(X) (5) 

The meaning o f  n is e a s i l y  o b t a i n e d  from the compar ison w i t h  the 
s i t u a t i o n  f o r  a n ~  gas. S t a r t i n g  w i t h  the " i s o t h e r m a l  d e f o r -  
mat ion p o t e n t i a l "  

W = NkT In (vlv o) (6) 
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with V and V as the volume in the "deformed" and in the fiducial 
o 

state resp. we arrive at the equation of state 

p : (~W/aV/T = (N/V)kT = n kT (7) 
g 

n~ = N/V is the density of the particles in the local part of the 
p~ase space /4/. By analogy we thus understand n as the density 

o 
of the quasi-particles (the chains) in the conformatlonal part of 
the phase space. On stretching the sample, n o is seen to be in- 
creased at least to infinitely large values in the limits X§ ~. 
Such singular behaviour is also obtained for an ideal gas in the 
limits V § 0. Both of these extrapolations are heuristical, elu- 
dicating the fundamental limitations of the models employed. 

THE VAN DER WAALS APPROACH 

An improved equation of state for an real rubber in tension has 
recently been presented /1,2/ by taking into account the finite 

length of the chains as well as interactions between the 
chains which are modifying the retractive force. Both of these ef- 
fects are phenomenologically considered by means of two "van der 
Waals-parameters" b and a /1,2/, thus arriving at the equation of 
state 

I 
- a D (X )  2 ( 8 )  f (~'NkT'/Lo I /D(X)  - b 

An interpretation of a and b is now intended taking into conside- 
ration essentials of the molecular structure of a real network. 

THE "EXCLUDED VOLUME" 

For an ideal conformational gas the phase space may be separated 
into three parts, the part describing the positions of the centers 
of mass, the conformational space and the space of momentum. Hence, 
it is possible to relate the total differential of the deformation 
function d~ to the relative change of the volume of the conforma- 
tional part of the phase space dVc/V c according to /I/ 

dVclV c = - de = - dX I ( I I D ( X )  ) (9) 

For rea l  networks w i t h  cha ins the leng ths  o f  which are f i n i t e  but  
s u f f i c i e n t l y  l a r g e ,  the above r e l a t i o n s  must p r o p e r l y  be m o d i f i e d  
in respec t  to  the i n f l u e n c e  o f  f i n i t e  cha in  l eng ths .  The volume 
o f  the cha ins themselves may be neg lec ted  in t h i s  case.  In t u r n i n g  
to  equa t i on  (8 ) ,  l e t t i n g  a be equal to  ze ro ,  we a r r i v e  a t  

NkT 
f = L / ( I / D  - b) (10) 

o 
For an permanent ne twork ,  f u l l  s t r e t c h i n g  is p o s s i b l e  on l y  i f  an 
" i n f i n i t e "  f o r ce  is a p p l i e d .  Hence, in these l i m i t s  we have the 
c o n d i t i o n  
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-2 i/Dm (11) b = l(~ma x - ~max ) = 

w i t h  ~max = Lmax/Lo' which can d i r e c t l y  be r e l a t e d  to the chain 

length  y f o r  Gaussian chains accord ing to 

y/yl/2 I/2 
~max = : y (12) 

introducing this correction into equation (9), we obtain 

I : -d~ I 
(dVc/V c) '1-Vec/Vc 

(13) 

Hence, the fraction of excluded volume in the conformational space, 
Vec/V c is continously increased with increasing values of the 
elongation 

Vec/V c : D/D m (14) 

occupying finally at ~ = ~max the total conformation~l volume. 

Thus, the van der Waals-parameter b is clearly defined by struc- 
tural properties of the network chains. The situation is more com- 
plex for real networks with a chain-length distribution as well 
as for short-chain networks where the volume of the chains should 
equally well influence the magnitude of the excluded volume. 

THE "INTERACTION PARAMETER a" 

Exchange of energy and momentum in the ideal network is only pos- 
sible at the junctions. Hence, the macroscopically measurable re- 
tractive force is in the static limits due to ~he exchange of mo- 
mentums. The sum of these momentums is negative in contrast to 
well known calculations of the static pressure of the ideal gas 
/9/. In real networks interactions may modify the exchange of mo- 
mentums. 

In order to arrive at a general interpretation of the van der 
Waals-parameter a, we introduce a local potential along the chains 
~(z) with z running from z = 0 at the junction point up to z = y/2, 
the center of the chain. Two effects may determine the course 
of  @(z): 

a) With the fo rmat ion  o f  the j u n c t i o n s  the ac tua l  s t r u c t u r e  pro-  
p e r t i e s  o f  the c ross l i nks  are r e s t r i c t i n g  the con fo rmat iona l  
freedoms in i t s  next  neighborhood.  On account o f  the s o l i d  
angles between the chemica l l y  bounded u n i t s ,  f o r  example, the 
fo rmat ion  o f  a g rea t  number o f  n o n - i s o e n e r g e t i c a l  conforma- 
t i ons  is expected.  
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b) The mutual interactions between neighboring chain segments 
may locally be different because of the sterical situation 
at the junctions themselves. 

We now assume that all these complex conformational restrictions 
are in the statistical average defining the following differential 
equation 

- a ~ / a z  = n o < y ( z ) >  (15) 

with <T(z)> characterizing locally the energetica] situation. 
<T(z)> = 0 results in the ideal network. For real networks, on 
the other hand, the gradient ar is assumed to vary locally such 
that the average potential is increased when getting nearer to the 
junctions. It must be considered as a first approximation if n 
is assumed to be independent on z. o 
In this particular situation we derive from equation (15) by inte- 
gration 

where 

~(0) : noE (16) 

y/2 
E = 2 f < y ( z )  > dz (17) 

0 

If the probability of occupation is then given by BOLTZMANN'S law, 
we find 

f = nkT = nc~eX p ( - n o E / k T ) ) k T  (18) 

Wi th  n E <<kT we d e r i v e  then the  a p p r o x i m a t i v e  e q u a t i o n  o f  s t a t e  
o 

2 E f : n kT - n (19) 
o o 

With equation (5) this may be cast into the form 

f = ( N k T / L o ) - D -  (N /Lo )2  E (0) 2 (20) 

By comparison with equation (8) (letting here b be equal to zero) 
the statistical equivalent of the phenomenological parameter a is 
given by 

a = (N/Lo)2E (21) 

Relation (20) is particularly noteworthy: The equilibrium retrac- 
tive force of a real molecular network is predicted to be de- 
minished on account of conformational constraints in the next 
neighbourhood of the junctions: Due to the local potential ~(z) 
which is assumed to take its maximum value at the junctions, the 
exchange of momentum over the crosslinks is reduced, thus, yiel- 
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ding a "pressure component" in the static force f. 

It is noteworthy to show that the stability of the network repre- 
sented by equation (20) is limited. 
Form 

af/ aL > 0 (22) 

we derive 

- ~c 2 Xc < NkT/2aLo (23) 

Hence, stable deformed states are possible only in the range of 
I< X<X �9 This situation is on principle comparable with the be- 

. C 
havlour of gases: From the van der Waals equation of state it is 
predicted that a system with b = 0 (without any influence of the 
"Eigenvolume") are stable only for V> V . The occurence of con- 

r 

densation in this case is at least elud~catmng the fact that it 
is necessary to take into consideration both of the van der Waals 
parameters to get a reasonable fit to observations. 

Hence, combining the above results we arrive at the equation of 
state of real molecular networks 

.pRT Dm(~. m) pN L E 
o = LoMoY D(~.) Dm(},m ) - D(~)  LoMoYRT 

D(~) (24) 

with ~ f/qo where qA is the initial crossection of the sample. 
p is the density of t~e system, M the molecular weight of the 

�9 . O . 
unit and y the number of per~odlc units of a chamn. From this 
approach we arrive at the following conclusions which should at 
least be tested by experiments: 

a) Molecular networks with sufficiently long chains and correspon- 
dingly small values of the parameter a are predicted to be 
thermodynamicly stable in the total deformation range. 

b) E may be dependent on the chemical structure of the cross- 
linking untis. 

c) A phase-transition should occur probably in short chain net- 
works with a proper set of a and b's /I/. 

The last statement is illustrated by the calculations shown in 
figure (I). 
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,Figure I :  S t r e s s - s t r a i n  curves f o r  van der Waa]s-networks w i t h  
d i f f e r e n t  cha in  leng ths  c a l c u l a t e d  w i t h  the a i d  o f  Eq . (19 ) ,  us ing 
the parameter :  X2" pN L E 
X m as i n d i c a t e d  w i t h  each curve ;  y = m' ao= L M R ~  = 20 

o o  
A . . .  B is MAXWELL's l i n e  f o r  the t r a n s [ t l o n  from A*-~B. I t  must 
be emphazised t h a t  the e x t r a p o l a t i o n  to s h o r t - c h a i n  networks can 
on ]y  be taken f o r  a q u a ] i t a t i v e  i n f o r m a t i o n  because o f  the ] i m i -  
ted v a ] i d i t y  o f  the van der  Waa]s equa t i on  o f  s t a t e  i nvo l ved  
( r e p r e s e n t i n g  a " c o n f o r m a t i o n a l  gas")  / I / .  
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FINAL REMARKS 

The above interpretation of the van der Waals coefficients of the 
phenomenological equation of state, is based on the assumption 
that the conformational and the dynamical situation in real mole- 
cular networks is characterized by the special role of the cross- 
links. One of its manifestations may be seen in a "repulsive com- 
ponent of the retractive force" which should modify the end-to- 
end distance distribution compared to the Gaussian network. 

This statement invites inquiry into the molecular structure of 
real networks. Significant in this connection are neutron-scatte- 
ring experiments on model networks with labelled crosslinks pu- 
blished by BENOIT et al. /5/. W.WILKE /6/ has shown recently that 
the characteristical maximum of the scattering curves can easily 
be computed with the aid of a hard-core gas model. The hard core 
might be taken as the simplest representation of the repulsion 
between the crossIinks. 

Using the above model we arrive at the final statement that the 
retractive force in strained molecular networks may not simply 
be related to the average segment orientation, thus, invoking a 
critical discussion of anisotropy properties in rubber elastic 
systems /7/. 
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